

Wireless Set No 19 Mk. 3 (Canadian)

This file has been downloaded from The Wireless-SetNo19 WEB Site

All files from this site are free of charge. If you have been charged for this file, please contact the person you obtained the file from as he has both illegally obtained the file and illegally charged you for it.

ELECTRICAL AND MECHANICAL ENGINEERING REGULATIONS

TELECOMMUNICATIONS $\quad \mathbf{2} 22$

METAL RECTIFIERS

GENERAL DESCRIPTION

Noter This information is provisional and is supplied for guidance pooding the issue of more complete instruotions. All errors of a technical natire sthouid be notified in accordance with Tels. a 009.

ISSUE I, 26JUL. 1946
Distribution-Class 800. Code Nos. 4 and 5

METAL RECTIFIERS

GENERAL DESCRIPIION
Note: This information is provisional and is suppliedfor guidance pending the issue of more complete instructions. All errors of a technical nature should be notified in accordance with Tels. A 009.

CONTENTS
GENERAL PRINCIPLES OF METAL RECTIFTERSParas.
General
Principle of operation1
Selenium rectifiers - construction1-3
Copper oxide rectifiers - construction4-5
Ageing- 10
Circuits 15 16
Mounting 17
WESTINGHOUSE METAL RECTIFIERS 18-47
Copper oxide types 18
Coding of Westinghouse copper oxide rectifiers $19-24$
Westinghouse copper oxide elements
25-47
25-47
WESTILITE (WESTINGHOUSE SELENIUM) RECTIFIERS - GENERAI 48-76
Coding48
Dimensions 49
Mounting 50
Electrical connections51-54
Details of Westinghouse selenium elements 55-68
Double voltage types of Westalite rectifier 69
Procedure for testing Westalite rectifiers 70-71
Half-wave and voltage-doubler circuits 72
Bridgerectifiers 73
D.C. blocking circuits 74-76
SENTERCEL (S.T. AND C. SELENIUMA) RECTIFIERS 77-87
irrangement code78
Examples 79-87

Table 1 - Current rating and use of Westinghouse copper oxide rectifiers 2 - Dimensions of rectifier elements
3 - Reverse currents
1001 - Service reference numbers of Westinghouse copper oxide rectifiers
1002 - Westinghouse copper oxide element data
1003 - Service reference numbers of Westinghouse Westalite rectifiers
1004 - Westinghouse iVestalite clement ratings when used in M.C. circuits
1005 - Westinghouse Westalite element ratings when used in D.C. circuits
1006 - V.A.O.S. reference numbers of Sentercel (S.T. and C. selenium) rectifiers
1007 - Sentercel (S.T. and C. selenium) L type disc ratings in A.C. circuits
1008 - Sentercel (S.T. and C. selenium) L type elements. Test figures and D.C. blocking characteristics
1009 - Types of metal rectifiers used in various service equipments
Fig. 1001 - Metal rectifier circuits and data
1002 - Metal rectifier arrangements
Issue 1, 26 Jul .1946

GMNERAL PRINCIPLES OF METAL RECTIFIERS
Jeneral

1. A rectifier may be defined as a device for convErting A.C. to unidirectional current.
2. In practice, several types of rectifiers are available as follows:-
(a) Vacuum tube rectifiers.
(b) Electrolytic rectifiers.
c) Vibrators.
(d) Metal rectifiers.
3. This regulation is concerned only with metal rectifiers of which there are two main types - copper oxide and selenium. The chief manufacturers of these are Miessrs. S.T. and C. (selenium types) and the Westinghouse Brake and Signal Co. (copper oxide and selenium types) and data on these companies' products are given.

Principle of operation
4. If a thir layer of cuprousoxide is deposited on a copper plate and subjected to certain heat and electrical treatments, it is found that when the copper is positive with respect to the oxide, a very little current is passed compared with that passed when the copper is negative with respect to the oxide. This combination is referred to as a copper oxide rectifier.
5. In the case of a selenium rectifier, a layer of selenium is deposited on a carrier plate or disc, which may be of nickel-plated steel, and subjected to certain heat and electrical treatments. The selenium is then sprayed with an alloy of low melting point. Current will flow when this alloy is negative with respect to the selenium. When polarity is reversed very little current will pass.

Copper oxide rectifiers - construction
6. The general method of construction of this type of rectifier is as follows. Copper discs or washers of suitable size are heated in air to a high temperature, and a layer of cuprous oxide of uniform thickness (about 0.003 in.) is formed on them. When they are cooled to room temperature, a layer of black cupric oxide of uniform thickness (about 0.003 in.) is formed on them. When they are cooled to room temperature, a layer of black cupric oxide forms on top of the red cuprous oxide, but as this plays no part in the action of the rectifier, it is removed.
7. The discs (or elements) are usually mounted on an insulated spindle, and connected either in series or in parallel. It is possible to have almost any arrangement of elements which may be desired.
8. It is easy to make an electrical connection to the copper itself, but rather more difficult to get a satisfactory connection to the oxide layer. In some cases a lead disc is held firmly against the oxide surface by a strong spring, while in others, the oxide surface is coated with a thin layer of metal which is deposited by evaporation of the metal in a vacuur.
9. The ratio of the forward resistance to the reverse resistance may be as much as 10,000: 1, although in general it is sonewhat less than this.
10. Owing to the fact that the forward resistance is never zero, nor is the back resistance ever infinite, heat is generated when a current flows through a wetal rectifier, and in many cases metal fins are inserted between the elements to dissipate this heat. As the tumperature of a copper oxide rectifier increases, its forward and backward resistances fall, but since its reverse resistance falls much more rapidly, a temperature is eventually reached when for all practical purposes it ceases to rectify. Care should always be taken, therefore, not to place rectifiers in any position in a piece of apparatus where the heat generated cannot readily to dissipated.

Selenium rectifiers - construction
11. In the selenium rectifier, a thin laycr (about 0.05 min.) of selenium is applied to one side of nickel-plated steel disc (natcrials other than steel may be used). When first applied, the selenium has an almost black, mirror-like surface, but after undergoing carefully controlled heat treatient, it changes to a grey crystalline form. The heat treatment is intended to develop the rectifying properties of the selenium as much as possible. The cdges and contre of the disc are then masked and the selenium surface is sprayce with a low-raelting-point alloy which acts as the other clectode. Rectification actually occurs between this alloy and the selenium.
12. In earlier types of construction contact was ade to the alloy surface by ieans of slotted spring contact plates. In later versions a centre-contact type of construction was used, which allows any asserbly pressure to be applied to the rectifier without damaging its rectifying properties. The former type is now obsolescent and should be changed whenever a roplacenent is necessary.
13. The selenium rectifier heats up when in usc but ulust not be allowed to exceed a terperature of $70^{\circ} \mathrm{C}$. If this terperature is exceeded, the reverse current rises very rapidly and eventually the netal alloy which was sprayed on the selenium nelts, causing destruction of the rectifier. For efficiency rcasons $55^{\circ} \mathrm{C}$. is considered the wost suitable aaxilun abient terperature.
14. As the selenium rectifier has a negative temperature coefficient, its output may rise slightly until it reaches a steady temperature.

Ageing

15. All metal rectifiers undergo ageing when in use. This takes the form of a slight rise in forward resistance during about the first 10,000 hours of use. The rate and extent of ageing depends on the conditions under which the rectifier is used.

Circuits

16. The types of circuits which may be met are shown in Fig. 1001, together with the relevent figures for each type of circuit.

Mounting

17. (a) Mount the units with cooling fins vertical.
(b) Ensure that there is a very free passage of air from below the rectifier to the atmosphere above. Do not mount rectifiers near or above other hot components. Termperature must not rise above $70^{\circ} \mathrm{C}$.
(c) Normally, connection is made to the rectifier by solder tags, but in the case of cooling fin units or heavy current rectifiers, bolted connections are made. Care must be taken when soldering that the solder and flux do not run down on to the rectifier elements. The spindle of the rectifier
is insulated from the active portion, and the unit may be fixed to the frame by means of the spindle provided the voltage to earth does not exceed 500 V .

WESTINGHOUSE MENA工 RECTIFIERS

Copper oxide types

18. Table 1 shows the current rating and use of Westinghouse copper oxide rectifier elements.

Max. current (at ambient temperature of $25^{\circ} \mathrm{C}$.)	Type	Circuit	Normal use
0.1 mA 0.25 mA 1 mA 5 mA 1 mA 2 mA 10 mA 30 mA 60 mA 12 mA 250 mNmA 0 0 over 120 mA	WX WMX W WM Ins trument Instrument Instrument J H C D B $\operatorname{LT}(\mathrm{LB})$ A, B	```Half-wave " Bridge " " Half-wave " " " " Bridge (N No. of B type elements) #```	Detection Detection Measuring instruments Measuring instruments Measuring instruments High-voltage work High-voltage work H.T. supply H.T. supply H.T. supply L.T. charging up to 12 V General use

Table 1 - Current rating and use of Westinghouse copper oxide rectifiens

Coding of Westinghouse copper oxide rectifiers

19. The code indicates the mechanical arrangement of the rectifier. The meanings of the symbols used are as follows:-
(a) The first numeral gives the number of arms in the stack.
(b) The second numeral gives the number of series elements per arm.
(c) The third numeral gives the number of electrical paths per arm.
(d) A suffix letter may appear indicating type of element.
(e) Further suffix letters as follows may appear:-
N.F. No fins (A and B types only)
L.C. No fins, but long connectors (A and B types only) S.F. Small fins $11 / 8 \mathrm{in}$. diameter (B type only)

Signifying different types of construction (G and H types only)

See paras. 30-40
20. The following are examples of the use of the code:-

1-20-1 $B \Lambda$ half-wave rectifier having 20 type B elements in series.
4-4-1A A single-phase bridge rectifier having four type A elements in series in each of four arms; a total of 16 elements in the complate stack.

2-30-1 D A voltage-doubled rectifier having 30 type D elements in series in each of its two arms.

6-10-1 A A three-phase briage rectifier having 10 type A elements in series in each arm; a total of 60 elements in the complete stack.
21. A further code occurs on a number of rectifiers used by the G.P.O. The Westinghouse's equivalent of this is as follows:-

$$
\text { G.P.O. Code } \quad \begin{aligned}
& \text { Westinghouse Code } \\
& \text { (copper oxide rectifiers) }
\end{aligned}
$$

A	BNF
AA	B
C	H
E	W

22. This code is used as follows:-
G.P.O.
$4 / 6 A$
$1 / 12 A$
$2 / 6 \Lambda$

> Testinghouse
> $4-6-1 \mathrm{ENF}$
> $1-12-1 \mathrm{BNF}$
> $2-6-1 \mathrm{ENF}$
23. It is to be noted that a half-wave 3-phase rectifier cannot be made on one spindle without putting in insulating washers. For examples of the code, see diagrams in Fig. 1002.
24. The series of rectifiers denoted by a letter and number, e.g., C.9, D. 27, B. 33 are all arranged as voltage-doublers. The number of discs per arm is the serial number less 1. Thus D. 27 is arranged 2-26-1.

Westinghouse copper oxide elements
25. Type A Element size:

Fin size:

1 1/2 in, diameter.
4 in. diameter round f in or $33 / 4$ in. square fin.

Note: ANF construction is Λ type elements without fins.
ALC construction is Λ type elements without fins but having large connectors.
26. Type B Element size: 3/4 in. diameter.

Fin size: $\quad 21 / 4$ in. square.
Note: ENF construction employs B type elements and no fins.
BLC construction employs B type elements and no fins, but has large connectors.
BSF construction employs B type elements with fins having a diameter of $11 / 8$ in.
27. Type C \quad Element size: \quad Fin size: $\quad 2 / 4$ in diameter.

This element has a higher forward impedance than type B.
28. Type D

Element size:	$3 / 4$ in diameter.
Fin size:	$21 / 4$ in. square.

All assemblies employing D type elements are arranged as voltage-doublers. This element has a higher forward impedance than a type B.

Types F, WTF and ImA instrunent elements
29.
$\begin{array}{ll}\text { Element size: } & 0.110 \text { in diameter. } \\ \text { Fin size: } & \text { Not fitted. }\end{array}$
The elements are mounted in a bakelized paper tube. This rectifier contains a maximum of four discs.

NOTE: Type WTF has F type elements; but contains a maximum of six discs which are assembled in a polystyrene body. The F type element is used in the lmA meter rectifier which is a bridge type with one element in each arm. Connections to this rectifier are as follows:-

White indicaies A.C connections
Red indicates positive
Black indicates negative
Types G, SG1A, TGLA, KG1A and 5mA instrment elements
30. All these use the G type element which is of 0.18 in. diameter and is without fins.
31. The KGIA supersedes the SGLA vhich was standard, and the TGlA which was intended for tropical use.
32. The letter A indicates that the oxide has a gold-sputtered surface. This is necessary because only a weak spring is used to hold the discs in contact, and a sputtered surface gives better electrical contact under these conditions.
33. The 5mA instrument rectifier is a bridge type with one element in each arm. Connections are as follows:-

> White indicates A.C. connections
> Red indicates positive
> Black indicates negative.
34. The TG1A is equivalent to a SGlA totally enclosed in Neoprene, but, even so, is not fully tropicalized.
35. The KGIA is a plastic tube with a metal cap spun on to each end against a Neoprene gasket. The connectors are soldered to the metal caps. This is intended to be fully tropicalized.

Types H, SHIA, THILA, KHIA, 101, $102, \mathrm{MBH}$ and 10 mA instrument rectipiers
36. These all employ the H type of element which has a diameter of 0.28 in. No fins are used with these elements.
37. H type may contain from 1 to 176 discs in series. The over-all diameter of the assembly is $\frac{1}{2}$ in. Fixing bolts project $1 / 2$ in. at each end and have a 2 B.A. thread. The positive end is coloured red.
38. Types SH1A, TH1A, KH1A

The KH1A now supersedes the SH1A, which was standard, and also the TH1A, which was tropicalized. The TH1A had a maximum of two elements, but the KH1A has a maximum of six. See section on types SG1A, TG1A and KG1A for constructional details.
39. Types 101 and 102

These consist of paper-lined copper tubes with bakelite ends. The copper tube is swaged over the end. The 102 is used mainly as a crash limiter for telephones.
40. Type MBH

In this type of unit the elements are assembled in a bakelite tube with a slot down one side. This permits connectors to be brought out at any point of the assembly. The tube holds a maximum of 16 elements. Insulators may be inserted to separate various sections, and each insulator occupies the same space as one element. In these assemblies the following colour code is used:-

Positive connectors are coloured red Negative connectors are coloured black Intermediate connectors are coloured white

It is not always possible to seal these assemblies to prevent the ingress of moisture.
41. 10 mA instrument rectifiers

These contain four elements assembled in a bakelite holder and connected as a bridge. The connections are as follows:-

White indicates A.C. connections
Red indicates positive
Black indicates negative

Type I

42.

$$
\begin{array}{ll}
\text { Size of element: } & 0.28 \mathrm{in} . \\
\text { Size of fin: } & \text { Not fitted }
\end{array}
$$

These are high-impedance elements used in circuits such as grid bias supply where the current consumption is small. The maximum number of elements in one assembly is 176, connected in series. The diameter of the assembly is $\frac{1}{2}$ in. and the $2 \mathrm{~B}, \mathrm{~A}$. fixing bolts project $1 / 2$ in. from each end. The positive end is coloured red.

Type W (Westector)

Standard	Miniature
0.08 in.	
not fitted	not fitted
1.625 in.	0.5 in.
0.375 in.	.219 in.

	Standard		Miniature
Weight of assembly:			(approx.)

This type of element and assembly is suitable for use at frequencies of the order of $100-200 \mathrm{kc} / \mathrm{s}$.
The miniature assembly has a maximum of six elements. The polystyrene type will hold up to 20 elements.

WX type

44. | Size of element: | Originally 0.04 in.
 Now 0.08 in. specially |
| :--- | :--- |
| treated to have the same | |

This type of element and assembly is suitable for use at frequencies up to 1.5Mc/s. The maximum number of elements in an assembly is six.

Types M3 and M9

45. Both these use B type elements.

M3
This is a bridge construction with one element per arm. It is of $3 / 4$ in. in diameter and the tags protrude $1 / 8 \mathrm{in}$. The overall length is $27 / 32$ in. There is a 0.113 in. diameter hole through the centre and this is tapped 6 B . A. to a depth of $1 / 4$ in. at one end.
46. M9

This is more robust than $M 3$ and is fitted with $11 / 8$ in. square fins. Its over-alllength is $15 / 8$ in. A $2 \mathrm{~B} . \mathrm{A}$. fixing bolt projects $1 / 4$ in. from one end.

Wiring of types MB and M9
47. These rectifiers are supplied with four leads, each one 4 in. long, identified by the relative positions as follows:-

The end connections, joined together, form the positive terminal.
The mid connector forms the negative terminal.
The two intermediate connectors form the two A.C. terminals.

WESTAIITE (WESTINGHOUSE SELENIUM) RECTIFIERS - GENERAL

Coding

48. The rectifier elements are designated by a number followed by letter, e. g., 4A. The number indicates the size of the element, while the letter indicates the cooling arrangement, if any, and hence its current carrying capacity and size of its fin. Since the maximum current which a rectifier can pass is limited by heating effects, the maximum current rating will depend upon the size of fin used.

Dimensions

49. The following sizes of rectifier elements are made:-

Element number	Size of element	Remarks.
1		Must be force-cooled. Not likely to be oncountered.
2	3 in. $x 3$ in. square	May be used up to 5 kW output
3	1 1/2 in. dia.	May be used up to 2.5A by connecting units in parallel
4	3/4 in. dia.	Use type 4A wherever possible
5	5/8 in. dia.	

Table 2 - Dimensions of rectifier elements

Mounting

50. (a) All rectifier units will withstand 500V R.M.S. between the electrical parts and the spindle, which may be mounted on an earthed framework. For voltage differences in excess of $500 \mathrm{~V} \mathrm{R}_{\mathrm{e}} \mathrm{M}_{4} \mathrm{~S}_{\bullet}$, the spindle should be insulated from earth.
(b) All rectifiers must be mounted with their spindles horizontal.
(c) Should the spindle of a rectifier be too long, the unwanted piece may be-sawn off.
(d) The rectifiers are suitable for use in humid conditions within the temperature range $-40^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$. They should NOT be dismantled, or the protective finish will be destroyed.
(e) These rectifiers must not be mounted in such a position that they are subject to heating from valves, resistors or any other source. In no of rcumstances must the ambient temperature exceed $55^{\circ} \mathrm{C}$. The rating must be reduced with rise in ambient temperature; Table 1004 gives ratings at $55^{\circ} \mathrm{C}$. When checking the ambient temperature, the equipment should be run for some time on full load to allow all components to reach a steady temperature. The temperature of the air just below the hottest rectifier element may be considered as the maximum ambient temperature that will be reached, assuming that the equipment is being tested under conditions similar to those under which it will operate.

Electrical connections

51. Inese should be made by soldering, but if a nut and bolt connection is made, the mut must be locked. When soldering, take care that solder does not run down on to the rectifier elements. Methods of making connections are as follows:-
(a) Type 2A. The teminals on this type of rectifier are suitable for soldered connections only but the lead may enter the terminal either parallel or perpendicular to the rectifier spindle. If parallel to the spindle, 16 S.W.G. tinned wire or a $1 / 16$ in. strip mounted on the edge is suitable for insertion into the slot, the sides of which are then bent over and the joint soldered.
(b) Type 3A. As for type 2A.
(c) Types 4A and 4B. Connections may either be soldered as above or bolted, using a $4 \mathrm{~B} . \Lambda$. boIt.
(d) Type 4C. Loop the conductor through the hole in the fin, and solder it or use a small bolt.

Arrangement code of Westalite rectifiers

52. Below is given an explanation of the arrangement code given in Col. 5 of Table 1003 showing the Service reference list of Westinghouse Westalite (selenium) rectifiers
(a) The figure and letter before the full stop ($2 \mathrm{~A}, 3 \mathrm{~A}$, etc.) indicate the type of element used in the rectifier. For further information on these, see paras. 51-65.
(b) The four groups of figures following the full stop and separated by hyphens indicate the arrangement of the elements as follows:-
(i) The first numeral indicates the number of $\Lambda . C$. terminals, and, if followed by P or N, indicates that the positive or negative $D . C$. tags are the outer.
(ii) The second numeral indicates the number of D.C. terminals.
(iii) The third numeral indicates the number of series elements in each am of the rectifier.
(iv) The fourth numeral indicates the number of electrical paths per arm.
53. The key to the various assemblies is given below.

Single-phase	Three-phase	Remarks		
Half-wave	1-1-1-1	$3 P-1-1-1$	\quad	N type to be
:---:				
considered standard				

54. It will be noted that a half-wave three-phase rectifier cannot be made on one spindle without putting in an insulator. For examples of this code see diagrams in Fig. 1002.

Details of Westinghouse seienium elements
55. Type 2Λ

Size of element: 3 in. square

Size of fin:
Maximum No, of elements:
6 in. square
Maximum No. of elements in series per arm: 4

Maximum No. of elements in parallel per arm:
Length between brackets:
42
$1.95+0.31 \mathrm{~N}$ inches (N is No. of elements)
Weight:
$0.63+0.34 \mathrm{~N}$ lbs. (N is No. of elements including spacers where these are used in odd series assemblies)
Alowance for lugs: $1 / 2$ in. along one face.

This type of unit is assembled on a $3 / 8$ in. Whitwrorth spindle.
56. Type 2L

Size of element:
3 in. square
Size of fin:
Not fitted
Maximum No. of elements:
50
Allowance for lugs:
1 in. along one face.
This element is obsolescent.
57. Type 3A

Size of element:	1.5 in. diameter
Size of fin:	3.75 in. square
Maximum No. of elements:	80
Maximum No, of elements in series per arm:	80
Maximum No, of elements in parallel per arm:	1 or 2
Length between brackets:	$1.57+0.15 \mathrm{~N}$ in. (N is No . of elements)
Weight:	$0.3+0.115 \mathrm{~N}$ lbs. (N is No. of elements)
Allowance for Iugs:	$3 / 8$ in. along one side.

These units are assembled on a $3 / 8$ in. Whitworth spindle. The form of assembly employs a fin to every pair of elements and when an odd number of series elements is necessary, a dummy element is added to retain the standard pitch of the fins.
58. Type 3AF

Size of element:

1. 5 in. diameter

Size of fin:
3.75 in. square

Provision of connecting lugs. Connections are made to the corners of three fins. These fins may be recognized by the fact that one corner is not cut out, but is sharp. The fins are made of tin in contrast to the die-cast fins of type 3A. In all other respects this rectifier is identical with the $3 A_{\text {. }}$
59. Type 3B

Size of element:
Size of fin:
Maximum No, of elements :
1.5 in. diameter
$27 / 8$ in. square 80

Similar to type 3AF in all other respects.
60. Type 3C

This differs from the type 3 only in that its fins are $21 / 4$ in. square and the connections are made to three of its fins as in the type 3hF.
61. Type 3D

This is similar to the type 3, but without fins.
62. Type 4A

Size of elements:
Size of fin:
Maximum No, of elements:
Maximum No, of elewents in series per arm:
Maximum No. of elements in parallel per arin: Length between brackets:

Weight:

3/4 in. diameter $21 / 4$ in. square 90 90
1 or 2
$0.97+0.076 \mathrm{~N}$ in. (N is the No. of elements)
$1.1+0.265 \mathrm{~N}$ ozs. (N is the number of eleients)

Connectors are made at one corner of each of three fins. The unit is asseubled on a 2 B.A. spindle. The form of asseibly ciploys a fin to every pair of elements so that when an odd nuiber of sorios elements is necossary, a duniy elenent is added to retain the standard pitch of the fins.
NOTE: When calculating the weight of an asseubly which as an odd nuiber of series elewents per arn, calculate on the next higher even number of elements per arm.
63. Type 4B

This differs froil the $4 /$ only in that it has fins which are $13 / 4$ in. $x 11 / 3$ in. 64. Type 4C

This differs from the $4 \hat{i}$ in that its fins are $1 / 8$ in. in dianeter and the lugs project $1 / 4$ in. at each of three corners.
65. Type $4 D$

This differs from the $4 i$ in that it is without fins, and its tags project $1 / 4$ in. towards threc corners of a square.

66. Type 5B

Size of element: $\quad 5 / 8$ in. dianeter
Size of fins: $\quad 13 / 4$ in. square
Maxinum No. of elements: 48
Niaximun No. of elements in series per am: 48
Mariminu No. of elenents in parallel per arr:
Length between brackets:
1

Weight:
$0.78+0.065 \mathrm{~N}$ in. (N is the No. of elersents)
$0.44+0.07 \mathrm{~N}$ ozs. (N is the number of elements)

Connections arc aade to three of the four corners available on the fins. The unit is assenbled on a 4 B.i. spindle. The form of assembly employ a fin to every pair of
elements so that if an odd number of elements is necessary, a dumny element is added to retain the piltch of the fins.
67. Type 5C

This differs from type 5B only in that it has $11 / 8$ in. diameter fins, and that the lugs project for $1 / 4$ in. at three corners.
68. Type 5D
Size of element: $\quad 5 / 8$ in diameter

Size of fins:
Not fitted
Maximum No. of elements: 60
Maximum No, of elements in series per arm: 60
Maximum No. of elements in parallel per arm: 1
Length between brackets:
Weight:
Allowance for lugs:
$0.78+0.58 \mathrm{~N}$ in. (N is No. of elements). $0.32+0.07 \mathrm{~N}$ ozs. (N is No. of elements).
$1 / 4$ in. at three corners, unless there is adequate space, when they may be made to lie on a straight line. The unit is assembled on a 4 B.A. spindle.

Double-voltage tyges of Westalite rectifier
69. The double-voltage type of Westalite rectifier is made in exactly the same sizes as the above-mentioned rectifiers, and is assembled to foxm similar units. These can be distinguished from the original type of Westalite rectifiers by the fact that the prefix l is added to the type and catalogue number. Thus a type 4 A would become a 14 A , while a 5 B 45 would become a 15 B 45 . The double-voltage type will work at twice the voltage at which the older type will work, although its dimensions are the same. This has been made possible by a process which doubles the reverse resistance while leaving the forward resistance unaffected.

Procedure for testing Westalite rectifiers

70. It is to be noted that the test figures given below apply to both temperate and tropical conditions, but under tropical conditions the test must not be applied for more than a few seconds, or the rectifier may overheat, and as a result, fail to pass the test, although it would have passed the test had it not overheated.
71. ON NO ACCOUNT MUST A MEGGER OR SIMILAR HIGH-VOITAGE GENERATOR BE USED FOR MEASURING THE RESISTANCE OF A RECTIFIER EITHER IN THE FORWARD OR REVERSE DIRECTION, AS THIS WILL LEAD TO SERIOUS DAMAGE AND WILL PROBABLY NIAKE THE RECTIFIER UNSERVICEABLE.

Xalf-wave and voltage-doubler circuits

72. (a) A voltage-doubler rectifer comprises two half-wave rectifiers connected in series, so that it can be tested either as a single half-wave rectifier between its + and - terminals, or as two half-wave rectifiers, by testing between its + and $A_{0} C_{0}$ terminals and between the $A_{0} C_{0}$ and terminals.
(b) Disconnect any condensers connected across the D.C. output, and use a non-inductive, resistive load, adjusted to give the current values stated below, and neasure the D.C. voltage. The effect of transformer regulation is to lower the D.C voltage; the allowance for transformer voltage drop is difficult to assess as the on-load voltage records the R.M.S. value of the loaded half-cycle and that of the unloaded half-cycle. Apply 16V R.M.S. per series element.The D.C. mean output voltage should be 6.0 V at the following currents:-

Element.	2 A	3 A	4 A	5 B	5 D
Current.	3.5 A	0.88 A	0.21 A	$0.106 \AA$	$0.106 \AA$

Bridge rectifiers

73. (a) Disconnect any condenser connected across the D.C. output, load the rectifier with a non-inductive resistance adjusted to give the current values stated below, and measure the D.C. voltage. Allow for transformer regulation by reading the R.M.S. on load voltage.
(b) Apply 16V R.M.S. per series element. The mean D.C. output voltage should be 12 V at the following currents:-

Element.	2 A	3 A	4 A	5 B	5 D
Current.	5 A	1.25 A	0.30 A	0.15 A	0.15 A

D.C. blocking circuits.

74. Forward resistance test . Pass a known D.C. current (as shown in the table below) through the rectifier and measure the voltage drop across the rectifier. The maximum values of voltage drop per series element depend on the temperature. There is no minimum value for this voltage drop, and a good rectifier may show figures which are only 60% of the maximum. Maximum values to be expected are as follows:-

Teirperature	10°	30°	60°
un mean value or̂ voltage drop at			
fíied test current (see below),	1.45	1.26	1.08

Currents to be used for test

Element	2 A	3 A	4 A	5 B	5 D
Current	5 A	1 A	0.225 A	0.130 A	0.130 A

75. Reverse resistance test. Froin a source of D.C. or rectified A.C. (ripple less thar 58), a reverse voltage of 15 V per element is applied and the reverse current neasured. The maximum value per series element is given in Table 3. NOTE: Where three series or more elements are tested, the reverse current will probably be only half the figure given since it is unlikely that all will be only just inside the pass limit.

Test temperature	$20^{\circ} \mathrm{C}$.				$55^{\circ} \mathrm{C}$.			
Type of element	24	3 A	4 A	$\begin{aligned} & 5 B \\ & 5 D \end{aligned}$	2 A	3 A	4 A	$5 B$ $5 D$
Maximum reverse current per single series element (mean amps.)	0.37	0.077	0.017	0.011	0.74	0.154	0.033	0.022

Table 3 - Reverse currents
76. Insulation test. Short-circuit the output terminals of the rectifier and use a Megger to check the insulation fron the spindle to the electrical parts, e.g., measure from the spindle to the short-circuited terminals. The resistance must be greater than 100M, A Megger must NOT be used for any other test.

SENTERCEL (S.T. a nd C. SELENIUM) RECTIFIERS
77. The gemeral remarks in paras. 1-16 apply to these rectifiers as well as to Westalite rectifiers, since they all work on the same principle. The differences are in the size of the elements and the fins, and in the coding used for showing the arrangement. Table 1006 shows only those S.T. and C. rectifiers used by the Army and no cross references are available for the numbers allocated by other Services.

Arrangement code

78. (a) The standard code is arranged in five sections, as follows:-
(a)
I
(b)
\square

(d)	(e)

(b) The sections have the following meanings:-
(i) Section (a). This indicates the arrangement of the elements in the rectifiers, and will contain one of the following letters:-

gingle-phase

H Half-wave.
B Bridge.
V Push-pull (full-wave).
D Voltage-doubler (centretapped type). tapped type).

Three-phase
PH Half-wave.
FB Bridge.
PV Push-pull.
(ii) Section (b). This indicates the diameter of the rectifier element in millimetres and will contain one of the following numbers:-18, 25, 35, 45, 67, 84, 112.
(iii) Section (c) indicates the number of series elements in each arm of the stack, and inay be any number up to 60.
(iv) Section (d) indicates the number of electrical paths per arm, and may be any number from 1-60.
(v) Section (e) indicates the type of cooling, mounting brackets, construction, finish, etc., and may contain any of the following letters:-

F - circular cooling fin and wide spacing between elements (45,67 and 84 mm . elements).

C - square aluminium cooling fins, heavy-duty connecting tags and wide spacing between elements (84 and 112 mm . elements).
K - Square steel cooling fins for 84 and 112 mm , elements.
A - cooling funnel, heavy-duty connecting tags and wide spacing between elements (84 and $112 \mathrm{~mm}_{\text {e }}$ elements).
HD - heavy-duty tags for making connection to bus-bars (67,84 and 112 mm . elements).
B1 - one mounting bracket per stack.
B2 - two mounting brackets per stack.
L - Stack with damp-proof finish and standardized dimensions.
R - Stack with close spacing of elements, damp-proof finish and standardized dimensions (18 and 25 mm . elements).
IJ - As L but without damp-proof finish.
ReJ - As R but without damp-proof finish.
(c) The letters and numbers indicated in this para. should be given in the order shown above.

Examples

79. H 18-40-II Half-wave rectifier, having 40 18mm. elements in series, standardized dimensions and damp-proof finish.
B 45-6-IFT

D 25-10-II Voltage-doubler rectifier, having ten 25 mm . elements in series in each arm, standardized dimensions and damp-proof finish.
B 112-15 AtJ Single-phase bridge rectifier, having five 112 mm . elements in parallel in each arm, funnel cooling arrangement, heavyduty connecting tags, standardized dimensions and without damp-proof finish.

General information on elements and on stacks containing elements of any one type
80. Since the arrangement code is rather more comprehensive than in the case of Westinghouse types, most of the mechanical details of a stack can be obtained by reference to its arrangement code. In the following paragraphs only the points not Bovered by the code are included.
81. 18mm. element assemblies

Maximum No, of elements per stack $=40$
Maximum No. of elements per stack with coolingarrangement $R=60$
Diameter 0.812 in.
Size of fixing bolt(s) 2 B.A.
Weight in oz. $\quad 1 / 4+\frac{N}{8}$ ($N=N o$. of discs).
82. 25 mm . element assemblies

Maximum No. of elements per stack $=40$
Maximum No. of elements per stack with arrangement $R=60$
Diameter 1.0 in .
Size of fixing bolts $2 \mathrm{~B}, \mathrm{~A}$.
Woight in $O Z_{0}=1 / 4+0.219 N(N=N o$. of elements)
83. 35 mm . element assemblies

Maximum No. of elements per stack $=40$
Diameter $=1.375$ in.
Size of fixing bolts $=2$ B.A.
Weight in oz. $=1 / 4+0.37 \mathrm{~N}(\mathrm{~N}=$ No. of elements $)$
84. 45 mm . element assemblies

Maximum No. of elements per stack $=40$
Maximum No. of elements per stack with arrangement $F=30$
Diameter $=1.75$ in. Diameter of $45-F=2.50 \mathrm{in}$.
Size of fixing bolts $=2 \mathrm{~B} . \mathrm{A}$.
Weight in $o z_{0}=1 / 4+0.55 \mathrm{~N}(\mathrm{~N}=\mathrm{NO}$. of elements)
Weight in oz。 of $45-\mathrm{F}=1+1.13 \mathrm{~N}$ ($\mathrm{N}=\mathrm{No}$. of elements)
85. 67 mm . element assemblies

Maximum No. of elements per stack $=40$
Maximum No. of elements per stack with arrangement $F=30$
Diameter $=2.625 \mathrm{in}$. Diameter of $67-\mathrm{F}=3.312 \mathrm{in}$.
Size of fixing bolts $=5 / 16 \mathrm{in}$. Whitworth.
Weight in $\mathrm{O} \mathrm{Z}_{0}=2+2 \mathrm{~N}$ ($\mathrm{N}=$ No. of elements)
Weight in oz. of $67-\mathrm{F}=4+4.1 \mathrm{~N}$ ($\mathrm{N}=\mathrm{No}$. of elements)
86. 84mm. element assemblies

Maximum No. of elements per stack $=40$
Maximum No. of elements per stack arranged $84-F=30$
Maximum No. of elements per stack arranged $84-\mathrm{C}=24$
Maxinum No. of elements per stack arranged $84-\mathrm{K}=8$
Maxinum No. of elements per stack arranged $84-\mathrm{A}=24$
Diameter of normal type $=3.312 \mathrm{in}$.
Diameter of $84-F=4.406$ in.
Size of fixing bolts $=5 / 16$ in. Whitworth.
Weight in oz. of 84 type $=2+3 \mathbb{N}=$ No. of elements)
Weight in oz. of $84-\mathrm{F}=3+6.3 \mathrm{~N}$ ($\mathrm{N}=$ No. of elements)
87. 112mm. element assemblies

Maxinum No. of elements per stack $=40$
Maxinum No. of elements per stack arranged $112-\mathrm{C}=24$
Maxirum No. of elements per stack arranged $112-\mathrm{A}=24$
Dianeter of normal stack $=4.406$ in.
Size of fixing bolts $=5 / 16$ in. Whitworth
Weight in oz. of normal stack $=4+4.5 \mathrm{~N}$ ($\mathrm{N}=\mathrm{No}$. of elements)

Note: The next page is page 1001

Table 1001 - Service reference numbers of Westhinghouse copper oxide rectifiers.

Table 1001 (contd.)

M.O.S.	M.A.P.	$A D$.	Westinghouse cat. No.	Arrangement (see para.18)	
2A 11042	$\begin{aligned} & 10 D 9643 \\ & 100952 \end{aligned}$		H. 12	1-12-1	
2A 3448			H. 16	1-16-1	
2A 11301			H. 20	1-20-1	
WY 1157		(W.6641?)	H. 25	1-25-1	
ZC/AY/N.3901				1-50-1	
$\begin{aligned} & \text { ZQ } 12781 \\ & \text { ZC } 10227 \end{aligned}$			W. 3901	$\begin{aligned} & \mathrm{H} .75 \\ & \mathrm{H} .100 \end{aligned}$	$\begin{aligned} & 1-75-1 \\ & 1-100-1 \end{aligned}$
MRH ASSEMBLIES:-					
			AD. 6832	MBH/2	-
ZA 23559			$\mathrm{MBH} / 4$	-	
ZA 18196			MBH/ 17	-	
ZA 10803			MBH/43	-	
2A 13434		A. 838	MBH/55	-	
J UNITS:-					
ZA 20506	$10 \mathrm{D13214}$		J. 10	1-10-1	
WY 2280	1001215		J. 20	1-20-1	
ZA 20863			J. 25	1-25-1	
$\left.\begin{array}{l}\text { ZC } \\ \text { ZA } \\ 112262\end{array}\right\}$		W. 4306	J. 50	1-50-1	
ZA 14060	10 D 617	W. 2627	J. 176	1-176-1	
BNF UNITS:-					
ZA 5869			2/2A	2-2-1	
ZA 21751			1/6A	1-6-1	
ZA 4791			2/6A	2-6-1	
ZA 20505			$2 \mathrm{P} / 6 \mathrm{~A}^{\prime}$	2-6-1	
ZA 20509		Tag No. 16	2N/6A	2-6-1	
ZA 20523 ZA 3160	10D15		1/12A	1-12-1	
$\begin{array}{ll}\text { ZA } & 3160 \\ \mathrm{Z} \mathrm{\Lambda} & 11041\end{array}$			4-1-1 BNF	4-1-1 BNF	
ZA 11041			4-1-3 ENF	4-1-1 BNF	
ZA ZA 16185			4-4-1 BNF	4-4-1 BNF	
			4/1-3-1	4 separate $1-3-1$ BNF	
ZA 11374			1-80-1 BNF	1-80-1 $\mathrm{BNF}^{\text {- }}$	
ZA 5944			M. 3	4-1-1	
2A 5874		A. 2012		4-1-1	
FINNED B and D UNITS:-					
	10D10536		HTI.17($=$ B.31)	2-30-1B	
ZA 10912			$\mathrm{HT} \cdot 16(=\mathrm{D} .31)$	2-30-1D	
$\begin{array}{lll}\text { 2A } & 3701 \\ \text { ZA } & 20386\end{array}$	10060			2-18-1D	
2A 20386			HT.14($=$ D.11)	2-10-1D	

Table 1001 (conta.)

M.O.S.	M.A.P.	$A D$.	Westinghouse cat. No.	Arrangement (see para.18)
ZA 10913			D. 27	2-26-1D
ZC 8254			4-12-1B	4-12-1B
ZA 11640	10 D 8630	AP. 2829	B. 33	$2-32-18$
ZA 16137	10 96332		IT. 4	4-2-3B
	1008070		IT. 5	4-4-2B
	10 D 170	$\begin{aligned} & \text { Spec. } 5096 \\ & \text { Drg. } 20515 \end{aligned}$	IT. 6	4-2-6B
ZA 4951			LT. 9	2-2-2
2A 5890			4-2-1 BLC	4-2-1B
\triangle TYPE UNITS:-				
ZA 24096			4-4-2A	4-4-2A
ZA 21219			4-12-1A	4-12-1A
ZA 15851			4-16-1A	4-16-1A
ZA 21218			2-8-3A	2-8-3A
(2C/10D/572				
(VD. 3942	10D572		4-8-2A	4-8-2A
ZA 18244			ITI. 10	4-4-3A
	1008629		4-4-4A	4-4-4A
	100356		1-8-9A	1-8-9A
	10016		4-8-1A	4-8-1A

Table 1002 - Westinghouse copper oxide element data

Element	A C. supply	Circuit	Load	Working temperature	Max. R.M.S. input volts	Max. D.C. output (mA)	D.C. output volts at max. current
Type A	Single-phase	Bridge	Inductive	N	8.0	750	6.0
	Three-phase	Bridge	Inductive	N	70	1000	706
$\begin{aligned} & \text { Type B } \\ & \text { BNF } \\ & \text { (0.P.O. I/RA } \\ & \text { type) } \end{aligned}$	Single-phase	Half-wave	Capacitive	N	1.0	50.0	\cdots
				T	0.75	50.0	-
		Bridge	Inductive	N	4.0	1000	2.5
				T	300	100.0	2.0
			Capecl tivo	N	4.0	70.0	-
				T	3.0	70.0	-
Type H	Single-phase	Hall mave	Inductive	N	3.5	10.0	3.5
			Capacitivo	N	3.5	10.0	3.6
				T	3.1	7.0	3.3
		Voltagem dblr	Capacitlve	N	4.0	10,0	74 (pair)
				T	3.5	7.0	\bullet

Table 1002 (contd.)

Element	A.C. supply	Circult	Load		ng rature	Max. R input	$\begin{aligned} & \text { 1.S. } \\ & \text { its } \end{aligned}$	Max, D.C. output (mA)	D.C. volts curren	utput at max.
Type J	Singlemphase	Half-wave	Capaciti		N	74		2.0	8.5	
					T	5.5		2.0	5.7	
		Voltager	Capaciti		N	7.4		2.0	17.0	(pair)
					T	5.5		2.0	11.0	(pair)
Type W	SIngle-phase	Holf-wave	Inductive		N	6.0 (pe		0.25	\rightarrow	
			Capaciti		N	6.0 (pe across rectifi		0.25	\cdots	
		Voltagedblr	Capaciti		N	12.0 (pe		0.25	-	
Type WX	SIngle-phase	Halr-wave	Inductiv		N	6.0 (pea		0.10	-	
			Capaciti		N	6.0 (pe		0.10	-	
		Voltagedblr	Capaciti			12.0 (pe		0.10	\rightarrow	
		Horking temperature	A	B (NF)	F	G	H	J	W	WX
Max4 reverse voltuge		N	6.0	4.0	4.0	4.0	4.0	6.0	3.0	3.0
		T		3.25	3.25	3.25	3.25	5 5.0	2.5	2.5
Max. forward current (amps)		N	350 mA	50 mA			10 mA	2mA	0.25 mA	0.1 ma
		T		50 mm			7 mA	2 mA	0.25mA	0.1 mA
Max. forward voltage drop when carrying max, forward current (as above) subject to a tolerance of $+25 \%$ -20%		N	0.7				0.7	2.0	2.0	2.0
Max. value of reverse current when the max. allowable reverse voltage is applied		N	8 mA				300uA	400un	50uA	1.5u4

NOTE: In colum headed working temperature - N indicates nomai, ise, a working temperature of $25^{\circ} \mathrm{C}$. average and $35^{\circ} \mathrm{C}$. maximuna.
of $45^{\circ} \mathrm{C}$.
Tindicates tropical, lees, a sustained working temperature

Table 1003 - Service reference numbers of Westinghouse Westalite rectifiers

Table 1003 (contd.)

Table 1004 - Westinghouse Westalite cloment ratings when used in A. C. circuits

Element	A.C. supply	Circuit	Load	Horking temperature	Max. R.M.S. input volts	Max. output current (amperes)	D.C. output volts at max. current
21	8inglamphase	Hall-wave	Inductive	N	16.0	3.75	6.0
				T	15.5	1.65	6.0
			:apacitive	T	9.0		
		Bridge	Inductive	N	16.0	5.0	12.0
				T	15.5	2.0	12.0
			Capacitive	T	15.0		
		Voltage dblr	Capacitive	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~T} \end{aligned}$	$\begin{array}{r} 9.0 \\ 2.0 \\ \hline \end{array}$		
	Three-phase	Hall-riave	Induct I ve	T	14.0	2.75	
		Bridge	Inductive	T	13.6	2.75	
	Six-phase	Half-wave	InductI ve	T	14.8	4.0	
3:	Single-phase	Half-wave	Inductive	N	16.0	0.825	6.0
				T	15.5	0.45	
			Capacitive	T	9.0		
		Bridge	Inductive	N	16.0	1.25	12.0
				T	15.5	0.60	12.0
			Capacitive	T	15.0		
		$\begin{aligned} & \text { Voltage- } \\ & \text { dbir } \end{aligned}$	Capacitive	N	9.0		
				T	2.0		
		Haltmave	Inductive	1	14.0	0.84	
	Inr ee-phase	Bridge	Inductive	T	13.6	0.84	
	Six-phase	Halforave	Induct! ve	T	14.8	1.20	
41	Singlemphase	Hall-wave	Inductive	\because	16.0	0.220	6.0
				T	15.5	0.100	6.0
			Capacitive	N	9.0	0.125	10.0
				T	9.0	0.045	10,0
		Eridge	Inductive	N	16.0	0.300	12.0
				T	15.5	0.160	12.0
			Capacitive	N	15.0	0.205	15.0
				T	15.0	0.110	15.0
		Voltagedblr	CapacItive	N	9.0	0.145	16.0
				T	9.0	0.060	16.0
	Tree-phase	Hall-ixave	Inducti ve	T	14.0	0.220	
		Bridge	Inductive	T	13.6	0.220	
	Six-phase	Half-wave	Induectiv	T	14.8	0.300	
		Half-weve	Inductive	N	16.0	0.125	6.0
				T	15.5	0.060	6.0
			capacitive	N	9.0	0.070	10.0
				T	9.0	0.02 .5	10.0

Table 1004 (contd.)

Element	A.C. supply	Circuit	Lood	Working temperature	Max. RM.S. input volts	Max. output current (amperes)	D.C. out put volts at max. current
5B	Single-phase	Bridge	Inductive	N	16.0	0.150	12.0
				T	15.5	0.080	12.0
			Capacitive	N	15.0	0.125	15.0
				T	15,0	0.065	15.0
		Voltagedblr	Capacitive	N	9.0	0.080	16.0
				T	9.0	0.030	16.0
	Three-phase	Half-wave	Inductive	T	14.0	0.110	
		Bridge	Inductive	T	13.6	0.110	
	SIx-phase	Holf-wave	Inductive	T	14.8	0.150	
50	Singlemphase	Hall wave	Inductive	N	16.0	0.060	6.0
				T	15.5	0.030	6.0
			Capacitive	N	9.0	0.030	10.0
				T	9.0	0.015	10.0
		Bridge	Inductive	N	16.0	0.075	12.0
				T	15.5	0.040	12.0
			Capacitive	N	15.0	0.070	15.0
				T	15.0	0.040	15.0
		Voltagedblr	Capacitive	N	9.0	0.040	19.0
				T	9.0	0.020	19.0
	Three-phase	Half-wave	Inductive	T	14.0	0.055	
		Bridge	Inductive	T	13.6	0.055	
	Slx-phase	Half-wave	Inductive	T	14.8	0.075	

NOTES: (a) Inductive load is taken to be the same as the resistive load.
(b) The above ratings do not apply when the rectifier is used for battery charging.
(c) Although some ratings are given for types $2 A$ and $3 A$ in holf-wave, voltage-doubler and bridge with reservoir condenser circuits, these circuits are not economical for large currents.
(d) The nomal output voltage at iull load in half-wave, voltoge-doubler and bridge with reservoir condenser circuits, is determined by the value of the reservoir capacity and the frequency of the supply. The output voltages given above are therefore typlcal values which could be expected in a normal well-designed circuit.
(e) The voltages given for 3 -and 6-phase circuits are the phase volts.
(f) Ratings given are for single elements.
(g) In colum headed Working temperature - N indicates normal, $1, e$, a working temperature of $25^{\circ} \mathrm{C}$, average and $35^{\circ} \mathrm{C}$. maximum.

- T indicates tropical, i.e., a sustained working temperature of $55^{\circ} \mathrm{C}$.

Table 1005 - Westinghouse Westalite element ratings when used in D.C. circuits

	2 A	3 A	4A	5B	5D
Max. reverse voltage (volts) at $35^{\circ} \mathrm{C}$. Max. reverse loltage (volts) at $55^{\circ} \mathrm{C}$.	15.0 15.0	15.0 15.0	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	15.0 15.0	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$
Max. forward current (amps.) at $35^{\circ} \mathrm{C}$. Max. forward current (amps.) at $55^{\circ} \mathrm{C}$.	4.5 2.0	1.0 0.55	$\begin{aligned} & 0.265 \\ & 0.125 \end{aligned}$	0.150 0.070	0.075 0.040
Max. forward voltage drop when carrying max. forward current (as above), subject to a tolerance of $+25 \%-20 \%$ at $35{ }^{\circ} \mathrm{C}$. $\text { -do- at } 55^{\circ} \mathrm{C}$	1.02 0.70	1.05 0.73	$\begin{aligned} & 1.10 \\ & 0.73 \end{aligned}$	1.17 0.77	$\begin{aligned} & 0.91 \\ & 0.55 \end{aligned}$
Max. value of reverse current (amps.) when the max. reverse voltage is applied at $35^{\circ} \mathrm{C}$. -do- at $55^{\circ} \mathrm{C}$.	0.37 0.74	$\begin{aligned} & 0.077 \\ & 0.154 \end{aligned}$	$\begin{aligned} & 0.017 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 0.011 \\ & 0.022 \end{aligned}$
NOTES: (a) The value of reverse current given in the above table is the maximum to be expected from any individual element. When more than three elements are comnected in series, it is unlikely that all of them will be just within the limits, and the value of the reverse current will probably be about half of that given in the above table. Similarly, when a number of elements are connected in parallel, the total reverse current is unlikely to be more than half the sum of the values giten in the table. (b) Ratings given are for single elements.					

Table 1006 - V.A.O.S reference numbers of Sentercel (S.T. and C. selenium) rectifiers

Rectifier Selenium No.	V.A.O.S. reference	S.T. and C. $280 / L U$ code	S.T. and C. arrangement code (see paras, 74 and
		75)	

Table 1006 (contd.)

Rectifier, selenium,No.	V.A.O.S. reference	S.T. and C 280/LU code	S.T. and C. arrangerient code (see paras. 74 and 75)
14	ZA 11696	280/LU 433B	H25-18-1X
15	ZA 11818	" 1076A	H35-11-1X
16	ZA 12281	" 546B	D18-11-1X
17	ZA 12507	" 742A	H18-20-1X
18	ZA 12731	" 642 B	B18-4-1X
$\begin{gathered} \text { Replaced by } \\ \text { No. } 63 \end{gathered}$	ZA 17642	" -	-
19	ZA. 12732	" 670A	B45-1-2X
20	ZA 13068	" 608A	B18-10-1X
21	ZA 13069	$\cdots 393 \mathrm{~A}$	H18-3-1X
22	ZA 13070	" 607A	B25-6-1X
23	ZA 13328	" 353B	D18-5-1X
24	2A 13471	" 423A	H45-24-1X
25	ZA 13472	" 427A	H45-18-1FX
26	ZA 13473	176704	B45-1-2X
(Refer No.19)			
27	20 13474	Will be allocated if reordered	B45-10-1B2X
28	ZA 13435	280/W 491A	D25-17-1X
29	ZA 14315	Will be allocated if reordered	D18-18-1B2X
30	ZA 14316	" "	D18-1-1X
31	ZA 14918	280/W 5284	B45-4-1B2X
32	ZA 14602	" 793A	D45-10-1X
33	ZA 14603	Will be allocated if reordered	B45-1-1X
34	ZA 14604	" "	H18-6-1X
35	ZA 14751	280/LU 724A	B35-9-1X
36	ZA 15265	" 403A	H18-4-1X
37	ZA 15286	Will be allocated if reordered	B112-1-5AL
38	ZA 15406	280/[U 549A	H25-28-1X
39	ZA 15524	" 395B	H18-1-1X
39A	ZA 18653	" 395C	H18-1-1X
40	ZA 15811	" 757B	H18-22-1X
41	ZA 16069	" 708B	D18-9-1X
414	ZA 18654	" 7086	D18-9-1X
42	ZA 16070	" 744A	H35-20-1X
43	ZA 16182	" 536B	H35-21-1X
44	ZA 16183	Will be allocated if reordered	H25-16-1X
45	ZA 16184	" "	B18-1-1X
46	ZA 16235	280/W 725A	D35-9-1X
47	ZA. 19606	Will be allocated if reordered	D67-10-1X
48	ZA 19607	"	D112-3-2AL
49	ZA 19608	"	D112-2-5AL

Table 1006 (contd.)

Rectifier, selenium, No.	$\begin{aligned} & \text { V.A.O.S. } \\ & \text { reference } \end{aligned}$	S.T. and C. 280/LU code	$\begin{gathered} \text { S.T. and C. } \\ \text { arrangenent code } \\ \text { (see paras. } 74 \text { and } 75 \text {) } \end{gathered}$
50	ZA 19756	280/LU 715A	H18-2-1X
51	ZA 19889	Will be allocated if reordered	B112-6-1AL
52	2A 20041	" "	H45-40-1X
53	2A 20058	280/U 608A	B18-10-1X
Refer No. 20			
54	2A 20152	" 720A	D35-20-1X
55	ZA 20389	Will be allocated if reodered	B45-2-2X
56	ZA 20478	280/九 725B	D35-9-1X
57	ZA 20479	" 537B	H35-26-1X
58	2420588	Will be allocated if reordered	H25-32-7X
59	2A 20589	" "	D25-14-1X
60	ZA 21079	280/LJ 252A	B45-9-1X
61	ZA 21053	Will be allocated if reordered	B67-12-1X
62	ZA 21427	II n	D35-20-1X
63	74 22059	280/J 691B	B18-4-1X
64	ZA 22524	" 6928	B84-1-3X
65	ZA 23560	1) 643A	B18-3-1X
66	2A 23561	" 644A	B25-6-1X
67	ZA 23562	" 532 B	D18-12-1X
68	7A 23563	" 642A	B18-4-1X
75	ZA 26201	" 417 D	[18-18-1X
	ZB 0281	' 186A	B112-5-1CX
	7B 10984	" 4438	H112-12-2AL
	ZC 8254	" 650A	B25-8-1B2X
	ZC 10223	Westinghouse rect. " 11	-
	ZC 10225		-
	ZC 10227	"	-
metal, No. 7	ZC 12603	280/TU 545A	B84-2-1X
	2C 18209	" 493A	D67-2-4FX
	ZC 18210	" 1195A	D84-10-1FX
Reotifier No. 76	7C 22110	" $13 B$	D25-1-1X
	ZC 22235	" 250A	B45-7-1X
	ZC 23083	" 812A	V84-7-1X
	2023420	" 405 H	H25-2-1X
	zC 24733	" 4780	H18-25-1X
	ZC 25319	" 699A	H45-12-15
	2C 25329	" 818A	D25-2-1I
	ZC 25365	" 405F	H25-2-14
	2C 25555	" 845A	H18-48-1B2R
	7C 25631	" 811A	H112-2-3x
	2C 26309	" 11354	H84-17-1X
	ZC 26778	" 8180	D25-2-1X

TELECOMMUNICATIONS

RESTRICTED

 J 282ELECTRICAL AND MECHANICAL ENGINEERTNG REGULATIONS

Table 1006 (contd.)

Rectifier, selenium No.	V.A.O.S. reference	S.T. and C. 280/LU code	S.T. and C. arrangement code (see pars. 74 and 75)
82 83 84 113	ZC 27058 ZC 27280 ZC 27461 ZC 27462 ZC/MM/10D/ 13184 ZC/AM/10D 13185 ZC/MM/10D/ 13186 ZC/iN/10DB/ 1143 2C/iy/W3398 ZC/LY/W3960 XA 9436 XC. 21.140		$\begin{aligned} & \text { B25-3-1X } \\ & \text { H18-20-1B2L } \\ & \text { D18-13-1X } \\ & \text { B67-12-1PX } \\ & \\ & \text { D18-8-1X } \\ & \text { H18-70-1X } \\ & \text { B45-2-2FX } \\ & \text { H18-36-1X } \\ & \text { H18-36-1B2X } \\ & \text { H35-6-2EB2 } \\ & \text { B112-2-2X } \end{aligned}$

NOTE 1: The 280/LU Code WUST BE USED when reference to a particular rectifier stack is made

NOTE 2: Rectifiers previously designated by X, E, E.T.F. are now replaced by those designated by L, but may still be obtained as replacements. L type dimensions are not identical with X, E, E.T.F.

Table 1007° - Sentercol (S.T. and C. selenium) L type disc ratings in A.C. circuits

Element	A.C. süpply	Circuit	Load	Working temperature	Max. R.M.S. input volts	Max. D.C. output current	D,C. output volts at max. current	Min. resistance loading at max. imput volts
18 mm.	Single phase	Half-wave	Inductive	N	18.0 V	40 mA	7.5V	184 ${ }^{\text {a }}$
				T	14.4 V	19 mA	6.0 V	3108
		Bridge	Inductive	N	18.0 V	75 mA	14.0 V	1848
				T	14.4 V	$35 \sin A$	11.0 V	317%
		Voltage_dblr *	Capacitive	N	18.0 V	30 mA	15.0 V	
				T	14.4 V	14 mA	12.0V	
	3-phase	Half-wave Bridge	Inductive	N		100 mA		
			Inductive	N		110 mA		
25 mm .	Singlephase		Inductive	N	18.0V	75 mA	7.5 V	98.38
		Half-wave		T	14.4 V	35 mA	6.0 V	1698
		Bridge	Inductive	N	18.0	150 mA	14.0 V	92.28
				T	14.4 V	70 mA	11.0 V	
		Voltage-ablr *	Capacitive	N	18.0 V	60 mA	15.0 V	
				T	14.4 V	28 mk	12.0 V	
	3-phase	Half-wave	Inductive	N		200 mA		
		Bridge	Inductive	N		220 mA		
35 mm .	Singlephase	Half-wave	Inductive	N	18.0V	150 mi	7.5V	49.49
				T	14.4 V	70 ma	6.0 V	852
		Bridge	Inductive	N	18.0 V	300mi	14.0 V	46.58
				T	14.4 V	140 mis	11.0 V	808
		Voltage-dblr*	Capacitive	N	18.0 V	120 mA	15.0 V	
				T	14.4 V	56 mA	12.0 V	
	3-phase	Half-wave	Inductive	N		400 mis		
		Bridge	Inductive	N		450 mis		
45 mm Figs, in brackets are for 45-F	Singlephase	Half-wave	Inductive	N	18(18)V	300(500)m A	7.5(7.5)V	$24.6(14.6) 8$
				T	14.4 (14.4)V	141 (235) mav	6.0(6.0)V	42(25) 2
		Bridge	Inductive	N	18(18) V	0.6(1.0) A	$14(13.5) \mathrm{V}$	23.25(13.42) 8
				T	$14.4(14.4) \mathrm{V}$	282(470) mA	11(11)V	40(23.3) 2
		Voltage-dblr*	Capacitive	N	18 V	250 mA	20 V	
				T	14.4 V	118 mA	16 V	

Element	R.C. supply	Circuit	Load	Working temperature	Max. R.M.S. imput volts	Max. D.C. output current	D.C. output volts at max. current	Min. resistance loading at max. imput volts
45 ma . Figs. in brackets are for 45-F	3-phase	Half-wave	Inductive	N		$0.81(1.3 A)$		
		Bridge	Inductive	N		0.9(1.5)A		
67 mm . Figs. in brackets are for 67-F arrangement	Single phase	Half-wave	Inductive	N	18(18)V	0.6(1.0)A	7.5(7.5)V	12.33(7.28) 8
				T	18(18)V	282(470)mA	$7.5(7.5) \mathrm{V}$	26.6(15.8) 8
		Bridge	Inductive	N	18(18)V	1.2(2.0)A	14.0(13.5)V	11.62(6.75) 2
				T	18(18)V	564(940) mA	14.5(14.0)V	25.4(15.0) 2
	3-phase	Half-wave	Inductive	N		1.6(2.6)A		
		Bridge	Inductive	N		1.8(3.0) A		
84 mm .	$\begin{aligned} & \text { Single- } \\ & \text { phase } \end{aligned}$	Half-wave	Inductive	N	16 V	1.2A	6.5V	5.34 9
				T	16 V	56 mA	6.5 V	11.69
		Bridge	Inductive	N	16 V	2.44	12 V	4.892
				T	16 V	1.128A	12 V	10.858
	3-phase	Half-wave	Inductive	N		3.2A		
		Bridge	Inductive	N		3.6A		
34-F Figs. in brackets are for types 84 C , K or Λ	$\begin{aligned} & \text { Single- } \\ & \text { phase } \end{aligned}$	Half-wave	Inductive	N	16(16)V	1.5(3.0) A	6.5(6.0)V	
				T	16(16) T	0.705(1.41) Λ	$6.5(6.5) \mathrm{V}$	9.23(4.53) 2
		Bridge	Inductive	N	16(16)T	3. (6)A	11.5(10.5)V	3.85(1.75) 2
				T		1.41(2.82) A	12.0(11.5)V	8.6(4.12) 2
	3-phase	Half-wave Bridge	Inductive	N		4.0(8.0) A		
			Inductive	N		4.5(9.0) A		
112 mm . Figs, in brackets are for types 112 C, K or A	Singlephase	Half-wave	Inductive	N	15(15) ${ }^{\text {r }}$	2.0(5.0) A	$6.0(6.0) \mathrm{V}$	2.99(1.14)2
				T	15(15)*	0.94(2.35) A	6.0(6.0)V	6.47(2.52) 8
		Bridge \neq	Inductive	N	15(15) 7	4.0(10.0) A	11.0(10.0)V	2.71(0.98) 2
				T	15(15) ${ }^{7}$	1.88(4.7)A	11.5(10.5)V	$6.0(2.28) 8$
	3-phase	Half-wave	Inductive	N		5.3(13)A		
		Bridge	Inductive	N		6.0(15)A		

NOTES: (a) * Voltage-doubler circuits. The A.C. input voltage is dependent on the capacity used
(b) D.C. output column gives volts per arm per disc, i.c., a rectifier consisting of a total of two discs, 1 per arm, will give 40 V D.C.
output from 18 V R.M.S. input
(d) The rating of 112 C and K must be reduced to 80% of the above values when
(a) used on single-phase supplies for battery charging.

In the column headed Working temperature - N indicates normal, i.e. a working temperature of $25^{\circ} \mathrm{C}$, average and $35^{\circ} \mathrm{C}$, maximum
sustained working temperature of $55^{\circ} \mathrm{C}$.

RESTRICTED

Table 1008
Sentercel (S.T. and C. selenium) type elements
Test figures and D.C. blocking characteristics

Table 1008 - Sentercel (S.T. and C. selenium) type elements.
Test figures and D.C. blocking characteristics

Element type	Performance at $35^{\circ} \mathrm{C}$. Performance at $55^{\circ} \mathrm{C}$.																							
	18	25	35	45	45F	67	67F	84	84F	$\begin{aligned} & 84 \mathrm{C} \\ & \mathrm{~K} \& \mathrm{~A} \end{aligned}$	112	$\begin{aligned} & 112 \mathrm{C} \\ & \mathrm{~K} \& \mathrm{~A} \\ & \hline \end{aligned}$	18	25	35	45	45F	67	67F	84	84F	$\begin{aligned} & 84 \mathrm{C} \\ & \mathrm{~K} \& \mathrm{~A} \end{aligned}$	112	$\begin{aligned} & 112 \mathrm{C} \\ & \mathrm{~K} \mathrm{\& A} \end{aligned}$
Nax, reverse D.C. volts per disc	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Miax. forward D.C. amps. for test and blocking purposes	106	. 12	. 23	. 47	. 78	. 9	1.5	1.8	2.3	4.5	3.1	7.5	. 028	. 056	. 108	. 22	. 366	. 422	. 705	. 845	1.08	2.115	1.46	3.52
Max, forward D.C. volts drop at max. 1 current (volts)		1.44	1.06	1.08	1.44	1.08	1.42	1.03	1.27	1.8	1.02	1.76	1.01	. 99	. 86	. 79	. 96	. 78	. 95	. 72	. 76	1.14	. 7	1.1
Max. forward D.C. resistance at max. current (2)	24.	12	4.6	2.3	1.85	1.2	. 95	. 57	. 55	. 4	. 33	. 235		17.5	8	3.6	2.6	1.85	1.34	. 85	. 7	. 54	. 48	. 313
Max. reverse current at max, ${ }^{*}$.C. reverse volts (mA)	7	12	30	55	55	120	120	200	200	200	350	350	7	12	30	55	55	120	120	200	200	200	350	350
Min, reverse resistance at max. reverse D.C. volts (8)	1715	1000	400	220	$2: 20$	100	100	60	60	60	34.3	34.3	1715	1000	400	220	220	100	100	60	60	60	34.3	34.3
Min. forward \neq current at max. A.C. R.M.S. volts, using a. load as in Table 7 in half-wave circuit (mA)	38	71	142	285	475	570	955	1140	1430	2850	1900	4750	18	33		134	223	268	446	538	670	1340	835	2230
Min, forward \neq current at max, A.C. R.M.S. volts, using a load as in Table 7 in bridge circuit (mA)	71	142	285	570	950	1140	1900	2280	2850	5700	3800	9500	33	66	134		446	538	895	1072	1340	2680	1790	4460
NOTES: * (a) Values given in table apply 5 seconds after application of reverse voltage. The initial vates depend on the previous histciry of the discs and are approximately 0.4 tines the above figures. (b) Current measurements made with moving-coil instruments reading mea																								

Table 1009 - Types of metal rectifier used in various Service equipments

Equipment	Rectifier		
	$\begin{aligned} & \text { V.A.O.S. } \\ & \text { reference } \end{aligned}$	Number per equipment	Type
Aerial unit G (W.S. No. 33)	$\begin{array}{\|l\|l\|} \hline \text { ZA } 4920 \\ \text { ZA } 5875 \\ \hline \end{array}$		Selenium No. 2 5 mA (Instr)
Amplifiers, R.F., No. 2, Mks. 1 and 2 (and Inductance, aerial tuning, No. 1)	$\begin{array}{ll} \mathrm{ZA} & 5875 \\ \mathrm{ZA} & 5938 \\ \mathrm{ZA} & 17696 \\ \hline \end{array}$		$\begin{aligned} & 5 \mathrm{~mA} \text { (Instr) } \\ & \text { W. } 6 \\ & \text { S.H.1.A } \end{aligned}$
Apparatus, carrier telephone $(1+4)$ Mks. 1 and 2 $\text { ZA } 14603$	ZA 1685 ZL 14604 ZA 16182 ZA 14603 2A 16183 ZA 16184	$\begin{aligned} & 3 \\ & 3 \\ & 4 \\ & 1 \\ & 8 \\ & 2 \end{aligned}$	$4 / 1 / 3 / 1$ Selenium No. 34 Selenium No. 43 Selenium No. 33 Selenium No. 44 Selenium No. 45
App., V.F. telegraph, 3-channel, duplex, No. 2	$\begin{array}{ll} \text { ZA } & 23560 \\ \text { ZA } & 25005 \\ \text { ZA } & 23561 \\ \text { ZA } & 23562 \end{array}$	$\begin{array}{r} 2 \\ 16 \\ 2 \\ 2 \end{array}$	Selenium No. 65 Metal, W6, wire ended Selenium No. 66 Selenium No. 67
App, , V.F. telegraph, S + Sx, No. 3	Z4 5877		W.X. 6
App., V.F. telegraph, S + Dx, No. 1C	$\begin{array}{ll} \hline \text { YB } & 01488 \\ \text { ZA } & 3428 \\ \text { ZA } & 5938 \\ \text { ZA } & 3429 \\ \text { ZA } & 3430 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 8 \\ & 4 \\ & 4 \end{aligned}$	Rectifier asserably No. 1 W. 12 W. 6 Selenium No. 7 Selenium No. 8
App., V.F. telegraph, $S+$ Dx, Nos. 2 C and 2 W	ZA 23560 $Z A$ 25005 YB 03206 $Z A$ 23559 $Z A$ 23563 $Z A$ 23562 $Z A$ 23561	$\begin{array}{r} 2 \\ 16 \\ 2 \\ 1 \\ 1 \\ 2 \\ 4 \\ \hline \end{array}$	Selenium No. 65 Metal, W.6, wire ended Rectifier, metal, F1, special Rectifier, netal, MBMM Selenium No. 68 Selenium No. 67 Selenium No. 66
Axplifier, filn recorder, No. 1	$\begin{array}{\|ll} \text { ZA } & 20506 \\ \text { ZA } & 20505 \\ \text { ZA } & 20507 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{J} .10 \\ & 2 . \mathrm{P} .6 . A_{0} \\ & 2 . \mathrm{N}, 6 . A Y \end{aligned}$
Apparatus, V.F. telegraph, 3-ch duplex, terninals, group 2	$\begin{array}{ll} Z A & 13069 \\ Z A & 13068 \\ Z A & 13070 \end{array}$	$\begin{array}{r} 24 \\ 4 \\ 8 \end{array}$	Selenium No. 21 Selenium No. 20 Selenium No. 22

TLLECOMENICITIONS

Table 1009 (contd.)

Equipment	Rectifier		
	V.A.O.S. reference	Number per equipment	Type
Apparatus, telegraph, 2-tone, Mk. 2	$\mathrm{ZA} 10803$ ZA 5873 ZA 5944 ZA 5877	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{MBH} / 4-1-1 / \\ & 4-1-1 . \mathrm{N} . \\ & 4-4-1 B \\ & M_{0} .3 \\ & W_{0} X_{0} 6 \end{aligned}$
Apparatus, C.T. (1+1) C inert active	YB 01847 YB 00470	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	Rectifier, bridge, No. 2 Rectifier, bridge, No. 1
Amplifiers, R.F., No. 1, Mks. 1 and 2	Z 14751	1	Selenium No. 35
Apparatus, selective carrier, No. 1	$\begin{array}{ll} \text { ZA } & 12731 \\ \text { ZA } & 27643 \\ \text { ZA } & 27644 \end{array}$	$\begin{aligned} & 1 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Selenium NO- } 18 \\ & \text { Selenium 280- } \\ & \text { W-645A } \\ & \text { Selenium 280- } \\ & \text { IJ-646A } \end{aligned}$
A.C.T. $(1+1)$ No. $2 \mathbb{N}$ terminal, active	YiB 00470 ZA 12507 ZA 11042 ZA 25005	$\begin{aligned} & 2 \\ & 4 \\ & 1 \\ & 2 \end{aligned}$	Rectifier, bridge, No. 1 Selenium No, 17 H. 16 W. 6 (wirv-ended)
Amplifier, film reproducer, No. 1	WY 1157	1	H. 50
A.C.T. $(1+4) T, M k .2$ terminals	ZA 14603 ZA 16182 ZA 16183 ZA 16184 ZA 14604 ZA 16185 ZA 14604	$\begin{aligned} & \hline 1 \\ & 4 \\ & 4+4 \\ & 1+1 \\ & 1 \\ & 1+2 \\ & 2 \end{aligned}$	Selenium No. 33 Selenium No. 43 Selenium No. 44 Selenium No. 45 Selenium No. 34 Metal $4 / 1 / 3 / 1$ Selenium No. 34
A.C.T. $(1+1) \mathrm{E}$ terminals, n nert	YB 03027	1	Unit, reotifier, metal, H.I.D.
A.C.T. $(1+1)$ E terminals, active	YB 03006 ZA 12507 ZA 5938 YB 03070 2A 11042	$\begin{aligned} & 1 \\ & 4 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$	Unit, reotifier, selenium No. 17A Selenium No. 17 W. 6 Unit, rectifier, SG1A Rectifier, metal. H .16

Table 1009 (conta.)

Equipment	Rectifier		
	V.A.O.S. reference	Number per equipment	Type
App., L.S. Parmeko type No. 5 A.C.T. $(1+1) \mathrm{W}$ terminals, inert	ZA 20588 ZA 20589 YB 01847	$\begin{aligned} & 4 \\ & 2 \\ & 1 \end{aligned}$	Selenium No. 58 Selenium No. 59 Rectifier bridge, HO .2
A.C.T. $(1+1) \mathrm{W}$ terminals, active, Mk. 1	$\begin{array}{ll} \text { ZA } & 11042 \\ \text { ZA } & 5938 \\ \text { ZA } & 12507 \\ \text { YB } & 00470 \end{array}$	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	H. 16 W. 6 Selenium No. 17 Rectifier, bridge, No. 1
App., V.F. telegraph, 3-ch, Dx, terminals, group 1	ZA 13069 ZA 13068 ZA 13070	$\begin{array}{r} 24 \\ 4 \\ 8 \end{array}$	Selenium No. 21 Selenium No. 20 Selenium No. 22
Aerial coupling equipment aerial unit-F	ZA 12018	1	Reotifier, meter
$\text { B.F.O. No. 1, Mk. } 1$ $\text { Mks. } 1^{\#} \text { and } 2$	ZA 5875 ZA 5875		5 mA meter H. 10 5 mA meter
Battery charger, 12V, 30A, No. 1	ZA 10006		Selenium No. 11
Battery charger, 240V, 10A, No. 2	ZA 29201	4	Selenium 2A/515
B.F.O. No. 5	ZA 5875		5 mA meter
Battery charger, 60V, 10.5A No.1	$\begin{aligned} & \text { ZA } 21219 \\ & \text { ZA } 21218 \end{aligned}$	6	Metal 4-12-1A Netal 2-8-3A
Bridges, test, Avo, No. 1 Mks.l and 2	$\begin{aligned} & \text { WY } 1157 \\ & \text { ZA } 21533 \end{aligned}$	$\text { (Mk. } \frac{1}{2} \text { only) }$	$\begin{aligned} & \text { H. } 50 \\ & \mathrm{~W} . \mathrm{X.} 2 \end{aligned}$
Battery charger, 165V, 15A, No. 1	TB 10984	8	Metal HII2-12-2A
Battery charger, $24 \mathrm{~V}, 10 \mathrm{~A}, \mathrm{No}$. 1	ZA 19608	1	Selenium No. 49
Battery charger, 110/220V A.C., No. 1 Battery charger, $110 / 220 \mathrm{~V}$ A.C.,	$\begin{aligned} & \text { ZB/M86/ } \\ & \text { AXI2 } \\ & \text { ZB/M86/ } \\ & \text { AY12 } \end{aligned}$	4 4	Rectifier, metal, 4xH 84-3-2ANP Rectifier, metal, $4 \times{ }^{\text {P }} 84-$ 17m1ATIT
Battery charger, 12V, 10A, No. 1	ZA 2981	1	Selenium No. 10
Charging set, lightweight, 80w	$\begin{aligned} & \mathrm{XC} / \mathrm{M}_{\bullet} \mathrm{I} 40 / 1 \\ & 280 \mathrm{LU} 609 \mathrm{~B} \end{aligned}$		Rectifier, iron, Se. type 280/4 6098

Issue I, 26 JuI. 1946

Table 1009 (contd.)

Equipment	Rectifier		
	V.A.O.S. reference	Number per equipment	Type
Electrolytic capacitance bridge No. 1			
Exchanges, C.B. multiple (W.D.) Unit, type N positions	ZA 5869 ZA 26475 ZA 20523 ZA 21751 ZA 26474	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	Rectifier, metal, 2/2A Rectifier, metal, 4/6A Rectifier, metal, $1 / 12 A$ Rectifier, metal, 1/6A Rectifier, metal, 1/2A
Exploders, dynamo, condenser Miks, 1 and 2	ZA 11214	1	Rectifier, metal, J. 50
Instruments, testing, Ferranti, universal 16-range, Mks. 1 and 1*	$\begin{array}{cl} \text { ZC } 10225 \\ \text { or } \\ \text { ZA } & 20387 \end{array}$	1 1	Rectifier, metal Instr. 1 mA, No. 1 Rectifier, metal, 1 mA
Instrument, testing, Avaminor, universal, 22-range	ZA 5875	1	5 mA instr.
Instrument, testing, Avometer, universal, $40-$ range	$\begin{aligned} & \text { ZA } 11111 \\ & \text { WY } 1343 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mA} \text { metal. } \\ & \mathrm{H} .8 \end{aligned}$
Instrument, testing, Avometer, universal, 46-range	$\begin{array}{ll} \hline \text { ZA } 5875 \\ W Y ~ & 1343 \end{array}$		$\begin{aligned} & 5 \mathrm{~mA} \text { instr. } \\ & \mathrm{H.} 2 \end{aligned}$
Keyboard, multiphone, AD 1316	2A 5869		Metal 2/2A
Locator, mine, No. 1	ZA 15265	1	Selenium No. 36
Meter, output power, No. 1	ZA 20871	4	WX. 1
Meter, output power, No. 2, Mk. 2	2G 10225	1	Rectifier, motal instr. $1 \mathrm{~mA}, \mathrm{No} .1$
Meter, outpat power, No. 2, Mk. 1	2A 20871	4	W.X. 1
Meter, output power, No. 3, Mk. 1	2C 10225	1	Rectifier, metal instr. $1 \mathrm{~mA}, \mathrm{No} .1$
Power supply units No. 5, Mks, 1 and 1*	$\begin{aligned} & \hline \text { ZA } 18654 \\ & \text { ZA } 18653 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Selenium No. 41A Selenium No. 39A

Table 1009 (contd.)

Equipment	Rectifier		
	V.A.O.S. reference	Number per equipment	Type
Power supply unit, No. 1, Mk. 1	ZA 14798	1	Selenium 20/45/40/1 (Complete bank of 20 rects.)
Power supply unit No. 4, Mk. 2	ZA 22843	4	Selenium 4C/82
Power supply units No. 4, Mks. 1 and 1* (for W / S No. 22)	$\begin{aligned} & \text { ZA } 15406 \\ & \text { or } \\ & \text { ZA } 22843 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Selenium No. 38 Selenium 4C/82
R. 109	ZA 5944		Type M. 3
R.109A, B and C	ZA 5944 ZA 20863 ZA 11202		Type M. 3 Type J. 25 Selenium No. 13
R. 206 , Mk. 1	ZA 5944		Type M. 3
Repeaters, carrier telephone, No. $2 T$ and No. 1T, Mk. 2	ZA 16070	4	Selenium No. 42
Repeater, C.T. $(1+1) \mathrm{C}, 2$-wixe	YB 02501	1	Unit, rect. selenium,No. 17
Reproducers, film wireless, No. 1, Mks. 1 and 2	ZA 20523		1/12A
R. 104	ZA 5938	2	W. 6
Repeater, telephone, 8-cct, Mk. 2	$\begin{array}{ll} \text { ZA } 14602 \\ \text { ZA } 14604 \end{array}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	Selenium No. 32 Selenjum No. 34
Repeater, ringing, No. 1	$\begin{aligned} & \text { ZA } 12731 \\ & \text { ZA } 12732 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Selenium No. 18 Selenium No, 19
Repeater, telephone, 2-cct, No. 1W	ZA 12281	1	Selenium No. 16
Radio link S.R. - As for Wireless set No. 11 Repeaters, C.T. (1 + 1)W, 2-wire Mks. 1 ZA 12507 and 2 also No. 2 N also $(1+1) \mathrm{E}$		4	Selenium No. 17
Reception set, Marconi D.F.G. 20 R.208(P.S.U.No. 17)	$\begin{aligned} & \text { ZA } 15237 \\ & \text { ZA } 11696 \end{aligned}$	1 4	$\begin{aligned} & \text { Rect., Metal, } \\ & \text { F. } 4 \\ & \text { Selenium No. } 14 \end{aligned}$
Repeaterw, V.F. telegraph, No. 1 Mks . 1 and 2	ZA 16069	1	Selenium No. 41

TEIECCOMUNLCATIGNS J 282	RESTRICTED	ELECTRICiL AND NLCHANICAL HNGINEERING REGULATIONS	
	Table 1009 (contd.)		
1	Rectifier		
Equipment	$\begin{aligned} & \text { V.A.O.S. } \\ & \text { reference } \end{aligned}$	Number per Typeequipment	
Reproducer, film wireless, No. 1 Mks. 1 and 2	ZA 20523	1	\$/12A
Recorder, film wireless, No. 1, Mk.	2A 20523	1	1/12A
$\begin{aligned} & \text { Repeater, C.T., No. I, Mk. } 2 \\ & \text { Repeater, C.T., No. } \end{aligned}$	$\begin{aligned} & \text { ZA } 16070 \\ & \text { ZA } 24759 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	Selenium No. 42 Selenium No. 69
R. 308	2A 25164 ZA 25165	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Selenium No. 70 Selenium No. 71
Reception set, Marconi, RC. 67	2A 5877	1	W.X. 6
Repeater, C.T., No. 1, Mk. 1	ZA 16235	1	Selenium No. 46
Repeaters, telephone, 2-cct, No. 1C, Mks. 1 and 1*	ZA 12281	1	Selenium No. 16
Supply unit, rectifier, No. 4	$\begin{array}{ll} \text { ZA } & 3425 \\ \text { ZA } & 3426 \\ \text { ZA } & 3427 \end{array}$		Selenium No. 4 Selenium No. 5 Selenium No. 6
Supply unit, rectifier, No. 13	ZA 22524		Selenium No. 64
Supply unit, rectifier, No. 11	$\begin{array}{ll} \text { ZA } 19606 \\ \text { Z } 19607 \end{array}$		Selenium No. 47 Selenium No, 48
Supply unit, rectifier, No. 6	ZA 2980	1	$\left.\right\|_{2 A / 808} ^{\text {Rect., }} \text { metal, }$
Switchboard, command, 200-1ine	2A 4791 ZA 5869	$\begin{aligned} & 20 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Rect., metal, } \\ & 2 / 6 A \\ & \text { Rect., metal, } \\ & 2 / 2 A \end{aligned}$
Switchboard, position, magneto $\frac{10+50}{60}$ No. 1 and Unit, swithcboards, magneto, multiple, 360-line, No. 1	ZA 4791 2A 5869	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \text { Rect. , metal, } \\ & 2 / 6 A \text {, } \\ & \text { Rect. , metal, } \\ & 2 / 2 A \end{aligned}$
Switchboards, F and $F, 20-, 40-$ and 60- line, Mk. 2	ZA 5869	1	$\begin{aligned} & \text { Rect., metal, } \\ & 2 / 2 A \end{aligned}$
Swithcboards, U.C., 6-1ine, Mk. 2, and 10- line, Mk. 2	ZA 21087	1	$\begin{aligned} & \text { Rect. }_{0} \text { metal, } \\ & 4 / 4 \sqrt{1} \text {, } \end{aligned}$
Supply unit, rectifier, No. 7	ZA 13100 ZA 13099	1	$\begin{aligned} & \text { Rect. }, \text { metal, } \\ & \text { A50935 } \\ & \operatorname{Rect}_{.}, \text {metal, } \\ & \text { A50934 } \end{aligned}$

Table 1009 (contd.)

Equipment	Rectifier		
	V.A.O.S. reference	Number per equirment	Type
Tester, T.M.S., No. 3	ZA 18196	1	MBH $4 / 1 / 1$
Telephone set, A.A., No. 1	2A 5869		$\begin{aligned} & \text { Rect., metal, } \\ & 2 / 2 A \end{aligned}$
Tester, T.M.S., No. 1, Mk. 1 Tester, T.M.S., No. 1, Mk. 2	$\begin{array}{ll} \mathrm{ZA} & 5938 \\ \mathrm{ZA} & 11696 \end{array}$	4	Rect., metal, W6 Selenium No. 14
Target control equipment, Mk. 2	Z^ 16207	3	H. 5
Test set, insulation, No. 3, Mk. 1	2^ 20387	1	Metal $1 \mathrm{~m} /$
Tester, valve, Avo, No. 1	ZA 21.751	1	Metal 1/6
Target control equipment, Mk. 1	Z4 5938	2	W. 6
Units, signalling V.F., No. 3, Mos. 1, 2 and 3	ZA 21087	1	4/4/1. ${ }^{\text {N }}$ F
Unit, master oscillator, No. 1	ZA 21427		Selenium No. 63
Undulator, U.G.6A, No. 3	ZA 11374	4	$\begin{aligned} & \text { Metal } \\ & 1-80-1 \mathrm{BNF} \end{aligned}$
Wireless set No. 33 (Aerial unit G)	$\begin{aligned} & \mathrm{ZA} 4920 \\ & \mathrm{ZA} 5875 \end{aligned}$		Selenium No. 2 5 mA
Wireless set No. 11	ZA 5877 ZA. 5944		$\begin{aligned} & \text { FX6 } \\ & \text { M. } 3 \end{aligned}$
Wireless set No. 19, Mk. 2	$\begin{aligned} & \text { ZA } 12151 \\ & \text { ZA } 4920 \end{aligned}$		$\begin{aligned} & \text { A. } 50962 \\ & \text { W.M. } 112 \\ & \text { Selenium No. } 2 \end{aligned}$
Wireless set No. 19, Mk. 3	$\begin{array}{ll} \hline \text { ZA } 5875 \\ \text { ZA } 17696 \end{array}$		5 mA meter S.H.1.A.
Wireless sets No. 18, Mkss 1, 2,3	$\begin{aligned} & \text { ZA } 5877 \\ & \text { ZA } 492 \mathrm{C} \end{aligned}$		下. X. 6 Selenium No. 2
Wireless set No. 38	ZA 5877		W.X.6
Wireless set No. 5(remote control unit) (keying units V.F.)Wireless set No. $\left.5 \begin{array}{l}\text { L.P. (Plessey) }\end{array}\right)$	$\begin{array}{ll} \text { ZA } & 3448 \\ \text { ZA } & 3701 \\ \text { ZA } & 5873 \\ \text { ZA } & 4951 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{H} .20 \\ & \\ & \mathrm{H} . \mathrm{T} .15 \\ & 4 / 4 / 1 \mathrm{~B} \\ & \mathrm{~L} . \mathrm{T} .9 \end{aligned}$
Tireless, remote control units, G Nos. 1 and 2	ZA 15524	3	Selenium No. 39

Table 1009 (conta.)

Equipment	Rectifier		
	V.A.O.5. reference	Nuriber per equipment	Type
Wireless sets No. 12, Mks. 1 and 2	ZA 11214 ZL. 3198 ZA 20152 ZA 22059	$\begin{gathered} 1 \\ 2 \\ 2 \\ 1 \\ (\mathrm{kk}, 2 \text { only) } \end{gathered}$	```J. }5 Selenium No. } Selenium No. }5 Selenimi No. }6```
Wireless sets No. 9, iilks. 1 and 1*	$\begin{array}{ll} \operatorname{Zin} 5875 \\ \text { Zi. } 5877 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Rect., metal, } 5 \mathrm{~mA} \\ & \mathrm{~W} . \mathrm{X} .6 \end{aligned}$
Wireless set No. 78	Zii 28101	1	Rect., metal, W4
Wavemeter, class D,No. 1, iks. 2 and 2*	2i. 13328	2	Selenium No. 23
Wireless set No. 36 line coupling unit	Z4 5877	1	W.X. 6
Wireless sender H.S.1, lik, 1 and associated units	2f. 13471 Zi. 13472 Zis 13473 ZA 13474 2A. 14315 2in 14316 2i 14918	$\begin{array}{r} 20 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array}$	Selenium No. 24 Selenium No. 25 Selenium No. 26 Selenium No. 27 Selenium No. 29 Selenium No. 30 Selenium No. 31
Wireless, rewote control unit, F 1 and2	Zii 19756	2	Selenium No. 50
Wireless set No. 22 (Inductance unit, R.F., No. 7)	$\begin{aligned} & \text { ZA } 5875 \\ & \text { ZA } 17696 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Metal, 5 mA SHIL
Wireless set No. 21	2A 5944 ZA 4921 ZA 11202	1 1 2	$\begin{aligned} & \text { Ii3 } \\ & \text { W. } 1 \\ & \text { Selenium No. } 13 \end{aligned}$
Wireless senders S33, Jiks. 1 and 2	ZA 5875 2A 4920 ZA 11112	$\begin{array}{r} 1 \\ 1 \\ 10 \end{array}$	Metal, 5 mA Selenium No. 2 Selenium No. 12
Wireless set No. 28	$\begin{array}{ll} \text { ZA } & 5877 \\ \text { ZA } & 5875 \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { W.X. } 6 \\ & \text { Metal, } 5 \mathrm{~mA} \end{aligned}$
Wireless set No. 5 H.P.	$\begin{aligned} & \text { ZA } 4951 \\ & \text { ZA } 5873 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & L . T \cdot 9 \\ & 4 / 4 / 1 B \end{aligned}$

CIRCUIT	SINGLE-PHASE HALF - WAVE	SINGLE - PHASE CENTRE - TAP	SINGLE-PHASE BRIDGE	3-PHASE HALF-WAVE	3-PHASE BRIDGE	$\begin{gathered} \text { 3-PHASE } \\ \text { CENTRE - TAP } \end{gathered}$
RECTIFIER CONNECTION						
RESISTIVE LOAD APPROXIMATE OUTPUT VOLTAGE WAVE FORM					$m m m$	$m m$
CAPACITIVE LOAD APPROXIMATE OUTPUT VOLTAGE WAVE FORM						
REOUIRED NUMBER OF PLATES IN SERIES WHERE	$\begin{gathered} \text { RESISTIVE LOAD } \\ \frac{E}{V} \end{gathered}$	$\begin{aligned} & \text { RESISTIVE LOAD } \\ & \frac{2 E}{V} \end{aligned}$	$\begin{aligned} & \text { RESISTIVE LOAD } \\ & \frac{E}{V} \end{aligned}$	$\begin{aligned} & \text { RESISTIVE LOAD } \\ & \frac{\sqrt{3} \mathrm{E}}{\mathrm{~V}} \end{aligned}$	$\begin{aligned} & \text { RESISTIVE LOAD } \\ & \frac{E}{V} \end{aligned}$	$\begin{aligned} & \text { RESISTIVE LOAD } \\ & \frac{2 E}{V} \end{aligned}$
(RMS) V = RATED VOLTS (RMS) PER PLATE	Capacitive load $\frac{(1+\sqrt{2}) E}{V}$	CAPACITIVE LOAD $\frac{2 \sqrt{2} E}{V}$	CAPACITIVE LOAD $\frac{\sqrt{2} E}{V}$	CAPACItive load $\frac{(1+\sqrt{2}) E}{V}$	CAPACITIVE LOAD $\frac{\sqrt{2} E}{V}$	CAPACITIVE LOAD $\frac{2 \sqrt{2} E}{V}$
THEORETICAL RIPPLE	121\%	48.3\%	48.2\%	18.3\%	4.2\%	4.2\%
MAXIMUM THEORETICAL OUTPUT EFFICIENCY $\frac{E_{0}^{D C} 1_{0}^{D C}}{E_{0}^{A C} I_{0}^{A C}}$	40.5\%	81.1\%	81.1\%	96.8\%	99.8\%	99.8\%

${ }_{\substack{r_{1}-3.282 \\ r_{1}-100}}$

Pig. 1002 - Metal reotifier arrangements
METAL RECIIFTERS
TECHNICAL HANDBOOK - MISCELLANEOUS INSTRUCTION

Redesignation of EVERs
Information

1. To maintain the proper sequence of EMER numbers, it is intended that:-
(a) all future issues of EMERs on this equipment will be published in the series Tels J 280 - J 289 and
(b) the current EMERe will be redesignated.

Issue 1, 1 JuI 55

$$
\text { Distribution - Class 800. Code No. } 4
$$

Aotion

2. The following EMERs will be redesignated as shewn.

Present designation					New designation (e)
	FMER designation (a)	Pages (b)	Issue No. (•)	Date (d)	
1	Tels A 512	$\begin{aligned} 1 & -17 \\ 1001 & -1025\end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 26 \text { Jul } 46 \\ & 26 \text { Jul } 46 \end{aligned}$	Tels J 282

57/Maint/6670
END

